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Abstract

Motivation: Batch effects are one of the major source of technical variations that affect the meas-

urements in high-throughput studies such as RNA sequencing. It has been well established that

batch effects can be caused by different experimental platforms, laboratory conditions, different

sources of samples and personnel differences. These differences can confound the outcomes of

interest and lead to spurious results. A critical input for batch correction algorithms is the know-

ledge of batch factors, which in many cases are unknown or inaccurate. Hence, the primary

motivation of our paper is to detect hidden batch factors that can be used in standard techniques to

accurately capture the relationship between gene expression and other modeled variables of

interest.

Results: We introduce a new algorithm based on data-adaptive shrinkage and semi-Non-negative

Matrix Factorization for the detection of unknown batch effects. We test our algorithm on three

different datasets: (i) Sequencing Quality Control, (ii) Topotecan RNA-Seq and (iii) Single-cell RNA

sequencing (scRNA-Seq) on Glioblastoma Multiforme. We have demonstrated a superior

performance in identifying hidden batch effects as compared to existing algorithms for batch detec-

tion in all three datasets. In the Topotecan study, we were able to identify a new batch factor

that has been missed by the original study, leading to under-representation of differentially ex-

pressed genes. For scRNA-Seq, we demonstrated the power of our method in detecting subtle batch

effects.

Availability and implementation: DASC R package is available via Bioconductor or at https://

github.com/zhanglabNKU/DASC.

Contact: zhanghan@nankai.edu.cn or zhandonl@bcm.edu
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1 Introduction

1.1 Batch effect

Batch effects are defined as the systematic non-biological variations

added to the ‘omics’ dataset during data acquisition. Batch effects can

arise from variations in experimental platforms, laboratory conditions,

sources of samples and personnel changes (Leek et al., 2010; Luo et al.,

2010; Scherer, 2009). If batch effects are not removed properly, they

will confound and diminish the biological signals leading to incorrect

conclusions (Akey et al., 2007; Gilad and Mizrahi-Man, 2015). It is

therefore mandatory to correct for batch effect before any downstream

Bioinformatics analysis (Belorkar and Wong, 2016; Cusanovich et al.,

2014; Hornung et al., 2016; Leek et al., 2010).

Algorithms for batch detection and correction can be classified

into two main categories: (i) location–scale (L/S) adjustment method

and (ii) matrix factorization method (Lazar et al., 2012). The L/S

method uses the central idea of transforming the mean (Location)

and variance (Scale) to remove batches from the dataset. One of the

most widely used L/S adjustment algorithm is ComBat (Evan et al.,

2007) and modified Combat (Stein et al., 2015). It uses an

Emperical Bayes framework for the estimation of the L/S parameters

that represent batch effects. These parameters are then used to re-

move the non-biological variations from the dataset. Distance

Weight Discrimination (DWD) (Benito et al., 2004) is another algo-

rithm based on the L/S adjustment method. It uses Support Vector

Machine algorithm along with batch information to find the optimal

hyperplane or DWD hyperplane. The dataset is then adjusted by

projecting the batches on the DWD plane and then subtracting out

the DWD plane from the dataset.

One of the major limiting factors for the use of the L/S based al-

gorithms in practice is the knowledge of batches, which is not trivial

especially in big data projects like ENCODE (Feingold, 2004) and

TCGA (Weinstein et al., 2013) because of mislabeling, sample swap-

ping and personnel changes. Matrix factorization based methods

eliminate this limiting factor by estimating batch effects from the

data. Some of the most commonly used algorithms that employ this

method are Surrogate Variable Analysis (sva) and Removal of

Unwanted Variation (RUV). sva (Leek and Storey, 2007) computes

a residual matrix after estimating the effect of covariates of interest

such as genotype and condition on each gene. It then uses Singular

Value Decomposition (SVD) on the residual matrix to compute

unmodeled latent factors. RUV (Gagnon-Bartsch and Speed, 2012;

Risso et al., 2014) assumes a set of control genes, i.e. housekeeping

genes, or spike-in controls that are not affected by the known covari-

ates, and it then uses factor analysis (and SVD transformation) on a

set of control genes to remove these technical variations from the ex-

pression matrix. Some of the other commonly known algorithms

that use SVD or factor analysis methods are Independent Surrogate

Variable Analysis (Teschendorff et al., 2011), PEER (Stegle et al.,

2010) and gPCA (Reese et al., 2013).

The major limitation of SVD based approaches is the orthogonal-

ity assumption between batch factors, which is almost never true in

real dataset (Mostafavi et al., 2013; Teschendorff et al., 2011).

Another limitation among all the batch detection methods (Leek and

Storey, 2007; Risso et al., 2014; Tung et al., 2016) is the use of linear

regression models, which give the same amount of adjustment to all

the genes whose expressions are measured in the experiment. The use

of negative controls is also a strong assumption when the data is

highly confounded (Mostafavi et al., 2013) or when there is variabil-

ity in spike-in controls (Risso et al., 2014). Overall, it has been

observed that SVD based algorithms may not guarantee the removal

of all the unknown covariates. Like SVD, non-negative matrix

factorization (NMF) is another dimension reduction algorithm pro-

posed by Lee and Seung (1999) and Lee (2001). NMF has been widely

used to extract useful feature information in the image analysis (Lee

and Seung, 1999) and cancer subtype studies (Brunet et al., 2004). In

contrast to PCA methods, NMF allows only positive addition of non-

negative basis components and does not require the orthogonality

assumption on the basis components as well. Furthermore, there is a

close connection between NMF and clustering. Ding et al. (2005)

proved that NMF is equivalent to spectral clustering in certain settings.

We propose a data-adaptive, non-parametric and non-regression

approach to remove the biological signal to prepare the data for

batch detection and then apply a semi-non-negative matrix factor-

ization (semi-NMF) method (Ding et al., 2010) to obtain the estima-

tion of the hidden batch factors associated with the samples. To

isolate the batch signal, we use fusion penalties that shrink each in-

dividual expression profile towards the means of its corresponding

biological group in a non-parametric and data-adaptive manner. To

ensure the stability of the estimated batch factors, we derive a con-

sensus matrix by applying semi-NMF multiple times. There are three

major advantages of our approach compared to existing approaches:

(i) it estimates batch effects from the data, (ii) it makes no assump-

tions on data probability distributions and (iii) it makes no assump-

tions on all genes affected at the same level by batch effects. We

evaluate the performance of our method in three genome-wide

expression studies involving large and small sample sizes. Our

approach accurately identifies the hidden batch factors from high-

throughput genomic datasets and outperforms the current algo-

rithms used for batch detection.

1.2 Notation
In this section, we introduce the notation that will be used in the rest

of the paper. We use uppercase boldface letters, such as U, to denote

matrices, and boldface lowercase letters, such as x, to denote vectors.

Uij denotes the element at the ith row and jth column of U. xi denotes

the ith element of x. ui denotes the ith column of the matrix U. UT is

the transpose of U and U�1 is the inverse of U. tr �ð Þ denotes the trace

of a matrix. U � 0 means that U is positive semi-definite (psd) and U

� 0 means that U is positive definite (pd). We use calligraphy letter

such as K to denote set. k � k1 and k � k2 denote L1 norm and L2 norm.

2 Materials and methods

2.1 Batch detection through a data-adaptive shrinkage

and clustering
We assume dataset Xp�n ¼ x1; . . . ; xnð Þ be the normalized (For

microarray datasets, it can be normalized using rma, gcrma or

MAS5. For RNA-Seq dataset, it can be normalized using either

abundance estimation or non-abundance normalization methods

like DESeq or TMM (edgeR). We used DESeq normalization for our

analysis on SEQC and Topotecan datasets.) gene expression matrix

with n samples and p genes, where xi ¼ x1i; . . . ; xpi

� �T
is the gene

expression vector for sample i. Let G be the group label matrix,

where genotype and/or conditions of each samples are defined.

Mathematically, G is an n�n indicator matrix, where n is the total

number of samples. It can be defined as

Gij ¼
1; if sample i and j under same condition

0; otherwise:

(
(1)

Our algorithm consists of two steps. First, we apply a data-adaptive

shrinkage on X based on the group label G. The batch free matrix U
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is the data-adaptive means estimated using fusion penalties. This

step allows us to obtain batch matrix B, which is the residual matrix

of X and U. In the second step, we use semi-NMF to extract the

batch factors from matrix B. It can be factorized into W and H,

where W is a p�k matrix and H is k�n non-negative matrix. We

do the matrix decomposition for different rank k 2 K and choose

the best k�, which maximizes the dispersion coefficient. Finally, the

estimated batch factors are saved in the consensus matrix �Ck� . The

entire process of the data-adaptive shrinkage and clustering (DASC)

is described in Algorithm 1.

2.2 Data-adaptive shrinkage
2.2.1 Non-parametric model to remove biological signal

By definition, G can be treated as a graph adjacency matrix. Let

L ¢ D�G, where D is a diagonal matrix whose elements

Dii ¼
P

j Gij. L is the Laplacian matrix of G (Chung, 1997). There are

two constraints on U based on empirical observations of transcriptome

data: (i) vector ui should be close to xi and (ii) ui and uj should be simi-

lar to each other, if Gij¼1. These constraints can be formulated within

the optimization framework with the following cost function:

min
U

J Uð Þ ¼
Xn

i¼1

kxi � uik2
2 þ kf Uð Þ; (2)

where xi; ui 2 Rp;U 2 Rp�n; f Uð Þ is the regularization item and k is

the regularization parameter. There are three forms of the penalty

term f Uð Þ, which are as follows:

1. f Uð Þ ¼ tr ULUT
� �

¼
Pn
i¼1

Pn
j¼1

Gij k ui � ujk2
2,

2. f Uð Þ ¼
Pn
i¼1

Pn
j¼1

Gij k ui � ujk1,

3. f Uð Þ ¼
Pn
i¼1

Pn
j¼1

Gij k ui � ujk2.

The first penalty function is equivalent to a ridge regression with the

ridge penalty defined by experimental conditions (Hastie et al., 2003;

Hoerl and Kennard, 1970). It shrinks the data points with similar labels

together. Second and third penalty functions are equivalent to data-

adaptive shrinkage (Chi and Lange, 2013). The third penalty function

has an extra property of providing a smoother clustering path as com-

pared to the L1 norm penalty function (Hastie et al., 2003).

2.2.2 Solution for data-adaptive shrinkage

Proposition 2.1 Optimization problems (2) with L1;L2;L
2
2 penalty

functions are convex.

According to Proposition 2.1, the objective function defined in

Equation (2) has a unique global solution U�. Moreover, the closed

solution is available with L2
2 penalty. Taking the derivative of the

function (2) with L2
2 penalty, the closed solution for U is

U� ¼ X Iþ kLð Þ�1: (3)

There are no closed solutions when L1 and L2 norms are used.

Hence, we use numerical algorithms such as ADMM and AMA (Chi

and Lange, 2013) to find the solution. We implemented a continu-

ous data-adaptive shrinkage by solving Equation (2) using ADMM

and AMA in the R package. However, in some special cases of k, the

closed solution is available. For example, if k¼0, U� ¼ X.

PROPOSITION 2.2 When k is sufficiently large, the samples in u�i
will give the mean of samples that Gij¼1.

2.3 Batch factor estimation
We hypothesize that the hidden batch information can be estimated

from the residuals between X and U�. Let us define the batch factor

matrix B as

B¢X�U�: (4)

To estimate the hidden batch factor, we applied semi-NMF (Ding

et al., 2010) to B. The choice of using semi-NMF over SVD is based

on our empirical observation that many batch factors are not or-

thogonal to each other, hence violating the strict orthogonality as-

sumption of SVD. Semi-NMF is more flexible for the extraction of

latent variables and input data with negative values.

We decompose the batch matrix B using semi-NMF as

B6 �W6Hþ; (5)

where B 2 Rp�n; W 2 Rp�k
6 ; H 2 Rk�n

þ . The matrix W is the basis

matrix and the positive matrix H is the batch factor. The batch fac-

tors can be divided into k clusters and batch assignments depend on

the relative values in each column of H. In our implementation, a

max operator is applied to each column of H to obtain the batch as-

signments b k; kð Þ.
For each random initialization, a batch factor will be estimated

and saved into a connectivity matrix C of size n�n with entry Cij¼1,

if samples i and j belong to the same cluster and Cij¼0, if they belong

to different clusters. To reach a stable clustering assignment independ-

ent of the initialization point, consensus matrix �C is estimated by aver-

aging multiple runs of semi-NMF (Brunet et al., 2004). The hidden

batch factor can be estimated by running a hierarchical clustering on 1

� C and cutting the dendrogram at a fixed height.

2.4 Metrics for method evaluation and tuning

parameter selection
In cases where the batch label is known, we propose to use two dif-

ferent metrics: (i) purity and (ii) entropy coefficient (Kim and Park,

2007) to evaluate the performance of DASC and other existing

methods in the literature. Suppose DASC predicts c clusters (pre-

dicted batch labels), while the data has q categories (real batch

labels). Then, purity is defined as

P ¼ 1

n

Xc

k¼1

max
1� j� q

nj
k

� �
; (6)

where n is the number of samples and nj
k is the number of samples in

the cluster k that belong to category j 1 � j � qð Þ. The value of P

ranges from 0 to 1, where one represents the highest accuracy in

clustering the samples.

Algorithm 1 Data-adaptive shrinkage and clustering

Input:

X: normalized data matrix, G: group label matrix, k:

regularization parameter, k: number of batch factors.[set k as

k in the below equation]

1: U�  argU JðU;X;G; kÞ. . data-adaptive shrinkage

2: B X�U�.

3: Wk;Hk ¼ argW;HjjB�WHjjF. . matrix factorization

4: Repeat step 3 for M times with different initializations.

5: Calculate consensus matrix �Ck. . average clusters

6: Get batch factors bðk;kÞ from �Ck.

Output:

Batch factors bðk; kÞ

Batch effects 1143
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A second metric used to measure the performance of our algo-

rithm is Entropy (Kim and Park, 2007), which is defined as

E ¼ � 1

n log2q

Xc

k¼1

Xq

j¼1

nj
klog2

nj
k

nk
; (7)

where q is the number of true batch labels and nk is the size of clus-

ter k. Smaller values of entropy represent better clustering results.

In practice, both the number of hidden factors and its value are

unknown. To determine the right tuning parameters, we propose to

use the dispersion coefficient summarized using the consensus ma-

trix �C for the estimated hidden batch factors. The entries of �C reflect

the probability that the samples i and j belong to the same cluster.

The dispersion coefficient q is defined as

q ¼ 1

n2

Xn

i¼1

Xn

j¼1

4 � �Cij �
1

2

� �2

: (8)

The values of q ranges between 0 and 1, where larger values repre-

sent stable clustering results.

There are two tuning parameters k and k in DASC. The optimum

tuning parameters are identified by searching over a grid of possible

combination of k and k that reaches the maximum dispersion level.

2.5 Computational complexity
The computational complexity of Algorithm 1 comes from two

parts: (i) getting the residual matrix B and (ii) estimating batch fac-

tors from H.

For L2
2 norm penalty, the closed form solution exists. Hence, the

total computational complexity is small, O n2p
� �

. For L1 and L2

norm penalty, the computational complexity of numerical algo-

rithms ADMM and AMA are O n2p
� �

and O npð Þ, respectively per it-

eration, when the minimum spanning tree of adjacent matrix G is

used as input. The use of ADMM and AMA induces a much higher

computational cost since it could take many iterations to reach con-

vergence for both algorithms.

To find a solution for semi-NMF, W and H are alternatively

updated until convergence. The time complexity for updating W

and H are in the order of m pnkþ nk2
� �

and m npkþ kp2 þ n2k
� �

,

respectively, where m is the number of iterations. Therefore, the

total time complexity of semi-NMF is O mkp2
� �

. To reach conver-

gence, m is typically below 100 in practice.

3 Results

3.1 Datasets description
In our first case study, we used a benchmark dataset from the RNA

Sequencing Quality Control (SEQC) project (Su et al., 2014) to test

the accuracy of our algorithm. The SEQC consists of four different

types of RNA: A (Universal Human Reference RNA), B (Human

Brain Reference RNA), C and D, where C and D are mixture of A and

B at a defined ratio of 3:1 and 1:3, respectively. RNA-Seq datasets

generated using Illumina (ILM) and Life Technology (LIF) were com-

bined across six different sequencing centers. The ILM datasets were

generated at the Australian Genome Research (AGR), Beijing Genome

Institute (BGI) and Cornell (CNL), whereas the Life Technology data-

sets were generated at University of Liverpool (LIV), Northwestern

University (NWU) and Penn State University (PSU). The entire gene

expression dataset consisted of 1396 samples with 43827 genes.

ERCC probes and spike-in mix samples (E and F) were not used in

our analysis. Due to its deep coverage, detailed annotation, well-

controlled sample preparation and clear batch labels, this large dataset

provides a prefect benchmark for batch detection algorithms.

3.2 Detecting batch effects in SEQC dataset
To demonstrate the importance of the data-adaptive shrinkage step,

we analyzed the performance of DASC on SEQC dataset and com-

pared our results to sva and other algorithms.

3.2.1 Regularization path of DASC

To illustrate the difference between our data-adaptive shrinkage

method and cell mean regression in sva, we plot the shrinkage track

with different parameters of k in Figure 1. We observed that the

samples of same group label (A, B, C, D) clustered together with the

increasing amount of k (Fig. 1). When k is sufficiently large, the solu-

tion of DASC could converge to the mean point of each sample type.

This could transform our convex optimization model into a cell

mean linear regression model. Cell mean regression model over

shrinks the center of each group and may lead to the loss of inter-

sample variation in the dataset. In contrast, our model maintains the

inter-sample variation, which is important for batch detection.

3.2.2 Both center and platform factors can be estimated by DASC

DASC was able to detect both the major source of batch effects,

which was due to sequencing platform and the secondary batch ef-

fects due to different sequencing centers (Fig. 2b). For samples from

AGR, BGI and CNL, DASC was able to cluster them in the correct

group with high accuracy. For LIV, NWU and PSU, DASC was also

able to cluster most of the samples into correct groups.

To evaluate the impact of penalty term, DASC was applied to

SEQC data without the shrinkage step, it was still able to identify

sequencing platforms as the two batches between the samples, how-

ever, it failed to identify the difference between sequencing centers

(Fig. 2a and Table 1).

Next, we applied DASC with multiple values of k (Table 1). Our

results indicated the performance of DASC is relatively stable with

respect to several evaluation metrics including purity, entropy and

dispersion. The optimum recovery on batch factors is achieved when

the regularization parameter k is small, ranging from 10�4 to 10�3.

When our data-adaptive shrinkage was replaced by linear regres-

sion, we observed sub-optimal performance (Table 1) as expected by

our theoretic analysis in Section 2.2.2.

Fig. 1. The regularization path of DASC. Data-adaptive shrinkage was applied

to SEQC dataset with 43 827 genes and the results of the shrinkage at multiple

levels of k is plotted using the first two principal components. In contrast, the

linear regression results used by sva are also plotted using the same PCA

mapping
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3.2.3 Comparison with other approaches

Next, we applied sva (Leek, 2014) on the same SEQC dataset and com-

pared its performances with DASC. We used svaseq() function from the

sva package in R (Leek et al., 2012) to detect the optimum number of

surrogate variables. Only 1 factor was estimated by sva and it was able

to roughly estimate the difference between sequencing platforms, but

was not able to detect the variation due to sequencing centers (Fig. 3a).

To further investigate the results of sva, we initialized the argu-

ment n.sv to 2, which represents the number of surrogate variables in

the svaseq() function. We observed a similar result, but with larger

separation on platform differences. Some of the centers were com-

pletely overlapped on each other. Our results suggest that sva was

able to classify the differences between the platform, but failed to

identify the variations due to different sequencing centers (Fig. 3b).

We also compared DASC results against clustering algorithms such

as k-means and hierarchical clustering. We chose k¼6, which is the

same as DASC in k-means clustering. The purity and entropy for k¼6

on an ensemble model of sva and k-means clustering were 0.64 and

0.33, respectively, whereas the purity and entropy for k¼6 on ensem-

ble model of sva and hierarchical clustering were 0.53 and 0.46, re-

spectively (Table 2). Overall, our analyses demonstrate that DASC is

superior to methods compared in this study on SEQC dataset.

3.2.4 DASC is robust to data distribution assumption

RNA-Seq data are often modeled using Poisson or negative binomial

distribution. A log transform is used in svaseq (Leek, 2014) to re-

duce the large variance in RNA-Seq counts. To illustrate the impact

of data distribution, we applied sva to a RNA-Seq dataset with and

without log transform. Without log transform, the performance of

sva deteriorates (Supplementary Fig. S3) as compared to the sva re-

sults on log-transformed data (Fig. 3b).

DASC uses a non-parametric data-adaptive model and solves the

problem in a unified optimization framework. Depending on the

type of data transform, the estimated data center will converge to

the generalized mean when k!1. For example, DASC will con-

verge to the arithmetic mean or geometric mean when counts or

log-transformed counts are used. Empirically, DASC gives similar

results with or without log transform (Fig. 2b and Supplementary

Fig. S2). Hence, DASC is robust to data distribution assumption.

3.3 Detecting unknown batch effects in Topotecan

RNA-Seq dataset
Next, we applied DASC to another RNA-Seq dataset (King et al.,

2013), where neurons treated with Topotecan, a topoisomerase in-

hibitor, were compared to those treated with vehicle (Supplementary

Fig. S4). In this study, the authors reported that topoisomerase inhibi-

tors reduce the expression of long genes (length >100 kb) that are

associated with Autism in cortical neurons.

We identified three different batches using DASC (Fig. 4a). To fur-

ther evaluate the validity of our estimated batch factor, we investi-

gated the header of the raw FASTQ files. The header encodes for the

following information such as sequencing platform id, the run num-

ber from the instrument and the flow cell lane. Our initial analysis on

the headers showed that RNA-Seq samples were sequenced by two

different ILM machines. Additionally, one batch of samples had

paired-end reads (n¼3 samples each of Vehicle and Topotecan treat-

ments) and other had single-end reads (n¼2 samples each of Vehicle

and Topotecan treatments). These findings were consistent with the

batch factors identified by DASC (Fig. 4a and Supplementary Fig. S5).

The third batch represented the samples with low sequencing depth or

total number of mapped reads less than 9 million (Fig. 4a and

Supplementary Fig. S7). Whereas sva was only able to detect two

batches from the dataset that were based on sequencing depth of the

samples (Fig. 4b). It failed to detect batches due to platform differ-

ences or sequencing type (single-end or paired-end reads).

Fig. 3. Comparison of surrogate variables estimated by sva using SEQC data-

set from ILM and LIF across six different sequencing centers: AGR, BGI, CNL,

LIV, NWU and PSU. (a) Surrogate variables from SEQC dataset for n.sv¼1.

(b) Surrogate variables from SEQC dataset with n.sv¼2

Table 2. Comparison of DASC to other methods: DASC was com-

pared to svaþ k-means/hierarchical clustering and PCAþ k-means/

hierarchical clustering on SEQC dataset

SEQC

dataset

Purity

(center)

Entropy

(center)

Purity

(platform)

Entropy

(platform)

DASC 0.77 6 0.05 0.26 6 0.04 1.00 6 0.00 0.00 6 0.00

svaþ k-means 0.64 6 0.03 0.33 6 0.01 1.00 6 0.00 0.00 6 0.00

svaþHC 0.53 6 0.00 0.46 6 0.00 1.00 6 0.00 0.00 6 0.00

PCAþ k-means 0.43 6 0.03 0.62 6 0.03 0.84 6 0.13 0.53 6 0.26

PCAþHC 0.50 6 0.00 0.60 6 0.00 0.88 6 0.00 0.51 6 0.00

P-value < 10�15 < 10�11 � �

Note: HC, hierarchical clustering.

Fig. 2. (a) Consensus matrix on the original matrix X with k¼6 for SEQC data-

set using the semi-NMF algorithm. (b) Consensus matrix on the batch matrix

B with k ¼ 0:001 and k¼6 for SEQC dataset using the DASC algorithm

Table 1. Performance dependency of DASC (k¼ 6) on various k val-

ues for the matrix X� of size 43 827� 1396

SEQC dataset DASC

k – 10�4 10�3 10�2 Regression

Purity (platform) 0.966 1.000 1.000 1.000 1.000

Purity (center) 0.414 0.881 0.881 0.770 0.770

Entropy (platform) 0.200 0.000 0.000 0.000 0.000

Entropy (center) 0.623 0.168 0.167 0.248 0.248

Dispersion 0.833 0.883 0.863 0.852 0.862

R (Variance shrinkage ratio) 0.000 0.034 0.259 0.777 1.000

Note: Purity, entropy, dispersion and variance shrinkage ratio were aver-

aged over 30 runs. ‘–’ represents semi-NMF results on X without data-adap-

tive shrinkage step.
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Moreover, the list of differentially expressed genes by Topotecan is

drastically expanded from 182 genes to 1771 genes when we only use

the single-end sequencing data (Fig. 5). A small number of differently

expressed genes were identified by paired-end sequencing data. This is

primarily due to the low sequencing depth on the paired-end sequencing

data. In our reanalysis, all reads were aligned using STAR (Dobin et al.,

2013) and the raw counts were computed using quantMode function in

STAR. The raw counts were then normalized and differently expressed

genes were generated using DESeq2 (Love et al., 2014) at FDR<0.05,

consistent with the original study of King et al. (2013).

3.4 Detecting batch effects in single-cell sequencing

dataset
To further determine if DASC can detect more subtle batch effects,

we applied our method to a single-cell RNA sequencing (scRNA-

Seq) dataset (Patel et al., 2014). The dataset consisted of samples

from five glioblastoma patients and two gliomasphere cell lines

(GSE57872; Supplementary Fig. S8). We used raw counts dataset

from recount2 (Collado-Torres et al., 2017). Low-quality samples

and genes with average counts less than 30 were removed. After fil-

tering, a total number of 36 295 genes across 531 samples were used

for further analysis. The raw-count matrix was then normalized

using computeSumFactors function (Lun et al., 2016) in the R pack-

age scran (McCarthy et al., 2017). We extracted the batch informa-

tion from the headers of the fastq files for all the 531 samples. Next,

DASC and sva were used to detect batch effects in this dataset.

DASC detected 13 different batches (Fig. 6; Supplementary Fig.

S9 and Supplementary Table S4) in the dataset, out of which 4 were

present among gliomasphere cell line samples. It was able to accur-

ately detect the samples that were generated due to different runs on

the sequencer (Fig. 6 and Table 3). Moreover, it detected samples

from MGH26 that were sequenced in two different runs (i.e. sam-

ples that ran on GLPB22-B5C with a run ID 556 and on HISEQ

with a run ID 704). Similar results have been reported by Hicks

et al. (2017). In contrast, sva estimated 74 surrogate variables and

did not detect batches due to platform differences or run number

(Supplementary Fig. S10). Furthermore, DASC demonstrated high

accuracy in detecting sequencing platform and run number as com-

pared to any of the other methods (Table 3).

Overall, our results demonstrated that DASC can extract and de-

tect more subtle batch effects even in scRNA-Seq data.

4 Discussion

DASC is an effective method to identify hidden batch effects in large

consortium datasets. Our method uses data-adaptive shrinkage to

get the appropriate estimate of ‘batch-free’ data. The output of

DASC is more stable and robust due to the use of consensus matrix

and data-adaptive shrinkage method.

From the case study of SEQC dataset, DASC outperforms all the

other algorithms compared in this study based on purity and entropy

measurement. From the second case study, DASC identified a strong

batch effect missed by the original study, which verifies the effective-

ness of our method and importance of batch correction. In a

scRNA-Seq study, DASC outperformed existing methods in detect-

ing day-to-day sequencing variations.

Fig. 5. Overlap between the differentially expressed gene lists from single-

end, paired-end samples and the original list from GSE43900 dataset

Fig. 6. Detecting run numbers in scRNA-Seq. Consensus matrix on the batch

matrix B with k ¼ 0:001 and k¼ 13 for GBM dataset (GSE57872) using the

DASC algorithm

Fig. 4. Batch detection by DASC and sva on Topotecan normalized counts RNA-

Seq dataset (GSE43900). (a) The batches estimated by DASC algorithm with

k¼1 and k¼3. (b) Scatter plot of the batches estimated by sva. The row names

used in heatmap are identical to the sample index used in the scatter plot

Table 3. Comparison of DASC to other methods: DASC was compared to svaþ k-means/hierarchical clustering and PCAþ k-means/hier-

archical clustering on GBM dataset (GSE57872)

GBM dataset Purity

(run no.)

Entropy

(run no.)

Purity

(platform)

Entropy

(platform)

DASC 0.956 6 0.005 0.068 6 0.002 0.986 6 0.0005 0.055 6 0.007

svaþ k-means 0.525 6 0.025 0.514 6 0.035 0.709 6 0.025 0.856 6 0.005

svaþHC 0.207 6 0.025 0.956 6 0.018 0.709 6 0.035 0.865 6 0.015

PCAþ k-means 0.648 6 0.037 0.380 6 0.024 0.775 6 0.018 0.702 6 0.03

PCAþHC 0.499 6 0.021 0.527 6 0.023 0.709 6 0.027 0.817 6 0.018

Note: HC, hierarchical clustering.
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Moreover, we showed that the results of DASC is independent of

data distribution assumption compared to PCA and sva. Altogether,

DASC is a general and flexible algorithm for detecting unknown

batch effects. It can be generalized to other omics datasets as well.

5 Conclusions

We presented an unsupervised batch effects detection algorithm via

data-adaptive shrinkage and semi-NMF. DASC can be used for de-

tecting batch effects from large and heterogeneous datasets. We

have shown the efficiency of DASC in three case studies. In all cases,

DASC was able to accurately identify the hidden batch labels and to

improve the downstream Bioinformatics analysis. DASC can also be

applied to detect batch effects in other types of genomic data where

quantitative values are measured. Finally, the batch information can

be further used as a covariate in conjunction with other variables of

interest for downstream Bioinformatics analysis.
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